
and at the wall x = Xw; a prime above a function is ordinary differentiation; and independent 

variables as subscripts denote partial derivatives. 
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PRACTICALLY ACHIEVABLE ACCURACY AND RELIABILITY OF 

THE SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS 

P. I. Balk UDC 536.24.02 

We develop a method of solution of inverse heat-conduction problems which makes it 
possible to obtain a guaranteed minimum of reliable information in conditions of 
indeterminacy. 

In practical analyses of data from model and natural thermal experiments, wide attention 
has been given to methods based on the solution inverse heat-conduction problems (IHCP) with 
the use of regularization [i]. It is known, however, that the regularization theory gives 
only a potential possibility to solve incorrectly posed problems. The regularization method 
itself has an asymptotically optimal character when the quality of the approximate solution is 
estimated from its behavior in comparison with the exact solution when the error of observa- 
tions tends to zero. If the number of measurements is small and the noise is appreciable, the 
convergence of approximate solutions is of secondary importance, and the principal problem is 
to extract the maximum amount of reliable information from the available data, and to isolate 
fragments of solution which, under the existing indeterminacy, are observed reliably. 

This formulation of the problem must be viewed alongside the fact that, in realistic 
conditions, there are always sufficiently large regions of competing interpretations of the 
input data (which are, objectively, of equal value) and any "optimum" solution chosen according 
to some principle, is capable of adequately reflecting only individual fragments of the true 
solution. It is difficult to analyze reliability of the local properties of the approximate 
solutions in terms of the classical estimates of accuracy constructed in terms of the metrics 
Lp. These facts stimulate the development of applied methods (adaptive [3], descriptive [4], 
local [5] and stepwise [6] regularizations) which make it possible to narrow down maximally 
the mass of the permissible solutions of the inverse problem by virtue of a more complete 
allowance for the restrictions on the properties of solutions and noise, and of a more special 
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choice of the usual parameters in the computational schemes. These methods should be viewed 
on the background of the traditional forms of regularization oriented towards the minimum 
a priori information (for example, about the pair (6, h):llu 6 - ull ! 6, l' ,IAh - All < h [2]) 
which are sufficient for the construction of stable approximations z6,h to the solu[ion of 
the equation Az = u (in mathematics, similar results are most valuable). 

In the regularization theory, the former approach is developed in the theory of pattern 
recognition and in the determination of functional dependences from empirical data [7], in 
the theory of sensitivity of control systems [8], in several branches of geophysics [9, i0], 
and in other disciplines. This method is based on the principle that, in incorrectly posed 
problems with incomplete a priori information, it is often expedient to restrict oneself to a 
search for properties of the object under investigation which contradict no interpretation 
of the input data. Mathematical methods then make it possible to carry out a meaningful and 
comprehensive analysis of the multitude of formally permissible solutions of the inverse 
problem with the aim of finding the general properties of the object under study which are 
present in all the solutions and can be assumed to be a reliable information about the unknown 
solution. The optimum estimates of the model parameters are assigned the role of "reference" 
solution which can reduce the technological difficulties in the realization of the approach, 
and help to form more realistic criteria about the true limits of indeterminacy. 

Below, we study the possibility of applying this concept to IHCP. The analysis is carried 
out using the example of a classical problem which requires to reconstruct the thermal regime 
T(~, T 0) of an infinite, thermally insulated rod at time T 0 from discrete measurements 
~(xi, x), i = i, N of the temperature at time T > T 0 which contain a random noise. Since the 
heat-conduction process is analogous to diffusion, this problem has found an important 
application in geochemistry [ii] in the prognosis of the concentration profile C(~, T o ) of a 
chemical element in undisturbed levels of mineral deposits using its distribution C(xi, T) in 
the diffusion halo. 

We assume, for simplicity, T o = 0, and denote by subscript 0 the temperature at the ini ~ 
tial moment of time. We then have, according to [12], 

To (~) exp ~ d~. (1)  

Ih  t h e  i npu t  da t a  as an e l emen t  o f  a f i n i t e - d i m e n s i o n a l  space  ( t o  avo id  i n f o r m a t i o n  in -  
c o r r e c t n e s s  o f  t h e  IHCP f o r m u l a t i o n ) ,  i t  i s  e x p e d i e n t  t o  use  a l s o  a f i n i t e - p a r a m e t r i c  d e s c r i p -  
t i o n  o f  t h e  app rox ima te  s o l u t i o n  o f  t h e  i n v e r s e  problem.  This  can be ensured  by u s i n g ,  in  
t h e  a p p r o x i m a t i o n  o f  t h e  unknown t e m p e r a t u r e ,  t h e  model c l a s s e s ~  n of  f u n c t i o n s  o f  t h e  t y p e  
T0(G; A) = A0f0(~) + . . . + A n f n ( 5 )  which c o n t a i n  a f i n i t e  number o f  f r e e  pa r ame te r s  Aj and have 
good a p p r o x i m a t i v e  and c o m p u t a t i o n a l  p r o p e r t i e s .  By t h i s ,  we u n d e r s t a n d  t h e  f o l l o w i n g :  t h e  
sequence  o f  c l a s s e s  {~n} forms a cha in  o f  embedded s e t s  ~ 1 c ~ 2 c . . . ~ 0 ~  . . . .  which have ,  as 
a l i m i t ,  t h e  s e t  ~,  which i s  dense  in  t h e  space  of  con t i nuous  (o r  p i e c e w i s e  c o n t i n u o u s )  f unc -  
t i o n s  and, f o r  any n,  t h e  problem can be so lved  in  te rms o f  e l e m e n t a r y  f u n c t i o n s .  These r e -  
qu i r emen t s  a r e  s a t i s f i e d ,  f o r  example,  by s e t s  of  p o l y n o m i a l s ,  s e c t i o n s  o f  F o u r i e r  s e r i e s  and 
sums o f  e x p o n e n t i a l s  f o r  which,  u s i ng  t h e t a b u l a t e d  i n t e g r a l s  [13 ] ,  t h e  d i r e c t  problem can be 
s o l v e d  in  a c l o s e  form. In  p a r t i c u l a r ,  i f  

T0 (~) = A0 + ~ Aj exp (-- ]~), (2)  
i=1 

then 
n 

T (x, "~) = .~  AjF) (x, -c), F/(x, T) = exp (]~a't) exp (-- ix). 
,,=o " 

(3) 

The problem of choosing n is to satisfy the incompatible requirements of a detailed 
description of the required dependence T0(G) while ensuring the stability of solution [6]. 
As in the application of the traditional methods of solution of IHCP to the present method, 
this problem is nontrivial. We therefore confine ourselves to recommendations [6]: the 
value of n should ensure that the temperature discrepancy is consistent with the level of 
error in the input information. The parametric dimensionality n of the problem should not 
exceed the number of measurements and should not lead to instability of the calculation as 
a result of the rounding errors in the results of computer calculations. 

244 



We consider a mixed formulation when, together with T0($), one does not know the thermal 
diffusivity a. It should be noted that for a fixed a, the (theoretically) linear heat-conduc- 
tion problem (given exact values of T(x) on the entire x axis) has, in the majority of cases, 
a unique solution. Ill the mixed formulation, however, the ambiguity manifests itself al- 
ready in the narrow finite-parametric classes of solutions. For example, two different func- 
tions (2) transform into one function T(x, T) if their coefficients A(~)j and A(]) are related 
by 

A~o t) = A~ 2), A~ ~) exp(farc) ---- A~ 2) exp(/2a~,), j = 1, n ,  (4)  

where a l  and a 2 are alternative values of thermal diffusivity. Nevertheless, the mixed formu- 
lation is meaningful if, together with the measured valuesT(x i, ~), the value $ = ~ of the 
required function is known (albeit in one pointT0($) = T). (The attempt to estimate simul- 
taneously several thermophysical parameters, and the use of reference values of the required 
functional dependences are discussed in [14] and [15], respectively.) The ambiguity is then 
considerably reduced. Indeed, let T0($) be the solution of the form A(~) + A(~ exp(-$) +... 
+A(~ exp(-n$) of Eq. (i) using an exactly specified function T(x) for an arbitrarily chosen 

value of a = a 0 . In the general case T O (~_) # T_ and the determined function is no longer a 
solution of IHCP with the restriction T0(~) = T which, with allowance for the constraints (4), 
leads to an algebraic equation with respect to the unkown a: 

Ko -=- ~ Kju / '  ---- O, u = exp(--aT); (5) 

Ko = A~~ K1 = A} ~ e x p ( - - ] ~ e x p ( ] " a o ~ c ) ,  ~i = t, n .  (6)  

By finding its roots on the interval (0, i), we find the (now finite) set of values ~t = 
-in ut/T of the coefficient a for which (and only for which) the mixed IHCP with one restric- 
tion has a solution. 

We now go over to a direct exposition of the method of solution of IHCP. It includes: 
I) The formation of a system of functionals M s which will be used to express the result of 
analysis of the input data; 2) The formalization of a priori restrictions on the region ~of 
the permissible solution of the inverse problem; 3) The formulation and solution of the opti- 
mization problems for the search of extremal values of the functionals M s on the set~9. 

We expand on the contents of each point with application to the problem (i). We start 
with the first one. It is widely accepted that, in the analysis of any algorithms of the solu- 
tion of inverse problems, it is necessary to try to adapt the algorithm exclusively to the 
solution of the target problem and not more than that (this is not so much a problem of the 
method as a requirement that the obtained solution is informationally meaningful). Accordingly, 
it is necessary to specify first the properties (characteristics) of the exact solution which 
were focused on in the physical experiment. In problems of the type (i), this can be local 
characteristics (the number, position and values of the extreme of the function T0(~)), as 
well as integral characteristics (linear storage of matter on the segment (~, 8) at moment To 
in the inverse diffusion problem equivalent to (i)). In particular, one can discuss the in- 
tegral estimates of the parameters Aj, which approximate the functions T0(~; A) (a similar 
problem was considered in [16] within the regularization framework). 

One of the advantages of the approach oriented towards the analysis of the set of per- 
missible solutions is the fact that it can be easily adapted to different aims followed by 
the interpreter in the solution of the inverse problem. We shall illustrate this by a non- 
typical formulation of the inverse problem which is not associated with the estimate of the 
solution in terms of classical metrics. Suppose that the target problem is a description of 
the set ~ of points ~ ~ (~, 8) where the values of an unknown function T0(~) exceed a given 
T(~ This formulation is interesting, incidentally, for geochemical applications where one 
chooses C(~ as the minimum anomalous concentration of an industrial deposit, and the problem 
reduces to the prediction oSq~_perspective segments within the region under study. The 
scattering parameter a = V2D~ is usually not known exactly (it is difficult to estimate the 
time from the beginning of the process). However, the reference values of C0([k) = C-k for an 
unknown concentration profile can be established by testing the uncovered natural or artificial 
native rocks. 
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We shall now attempt to formulate the target problem in terms of functionals. If ~ = 
{E 6 (a, 6): T0(E) > T(~ is a meaningful characteristic of the solution of IHCP, the follow- 
ing three sets will be meaningful characteristics of any family of possible solutions of the 
inverse problem: ~i set of points E 6 (=, 6) in which the value of each of the permissible 
approximate solutions T0(E) exceeds a given T(~ the set ~2 of points E 6 (=, 6) for which, 
among the permissible solutions, there are both functions with the value T0(E) >_ T(~ as well 
as functions with the value T0(E) < T(~ and the set ~s of points E 6 (a, 6) where all the 
permissible solutions take the values T0(E) < T(~ If these sets are constructed, the analysis 
of the data {T(xi) } allows the following interpretation: for an incomplete a priori informa- 
tion, it is impossible to construct the region ~ but one can assert that a) ~ic ~, i.e., it is 
certain to identify some subset of ~; b) ~3 n~ = ~ , it is reliably established that segment 
~3 is of no interest from the viewpoint of the target problem; c)~2 is a uncertainty region in 
whose every point ~ one can expect, for the unknown function T0(E), both T0(E) >_ T(~ (be- 
cause the points E 6 S \ ~ have not been identified) as well as T0(E) < T(~ 

In the general case, the sets ~m, m = i, 2, 3 are sets of nonintersecting segments, and 
the required functionals M s can be the coordinates of their ends. 

The second point of the method is the set of permissible approximate solutions T0(E) = 
A0f0(E)+...+Anfn(E) of the inverse problem which are obtained for some possible values a. 
This is determined by the composition of the input data. We assume that besides the values 
T(x i) we know: the estimate ~ of the absolute error of the measurements (one could take also 
the pointwise estimates f_or each xi); the boundaries (a_min , ~max) for the unknown thermal 
diffusivity; the values T k = T0([k) , given with some error e~, of the required function in 
points Ek, k = i, K (since one can use two different registration schemes we have, in general, 
e~ # e). The set of allowed solutions of the inverse problem will be composed of all coeffi- 
cients Aj of function T0(E; A) and values a which satisfy the inequalities 

IT (xi) = ~ ,4~F~ (xi, a)[ < e, i = 1, N, (7) 
]=0 

i=0 

atom ~ a ~ ama~. (9) 

It remains to specify the method of construction in terms of the sets ~i, f12 and ~3. 
The interval (~, 6) is covered by a grid {~(E) , s = i, L with a sufficiently small step h, 
and the points E(s are classified as points from one of the sets ~i, ~2 and ~s- To this end, 
for each s we formulate two mathematical programming problems: to minimize (maximize) the 
linear functional 

To(~ cO) = [o~ tO) Ao + fl ~(t)) A1 + . . .  + [ .  ~(o) An (10) 

on the  s e t  of  v e c t o r s  (A o, A 1 . . . . .  An; ~) which s a t i s f y  ( 7 ) - ( 9 ) .  

Let T(min), T(m~x) be the solutions of these problems for instantaneous s Three cases 
are possible~ 

1) if T~ rain) > TC~ 6 ~,; 

2) if T~ n~x) > T (~ but T~ rain)'< T (~ ~(l) 6 Q~; 
3) ff T} max)<T(~ (O6fl". 

The union of points E(s which correspond to one case is a pointwise approximation of the 
required solution <~i, ~2, ~3 >. 

It is apparent that the identification of the points E(s which coincide with any of the 
reference points Ek from the restriction (8) can be simplified. One more remark. The search 
for the extrema of the function (i0) is complicated considerably by the restriction (7) which 
is nonlinear with respect to a. It is expedient to linearize the problem. The interval 
(amin, a_max) will be covered by the grid {~q}, q = i, Q and the extrema of the functions (i) 
will be defined for each pair (E(s an) but within the linear constraints (7) and (8). The 
point E(s will be referred to ~i or ~-a only when the cases i) and 3) take place for all aq, 
q = i, Q. 
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Fig .  1. Graphs of  t h e  f u n c t i o n s  1) T0(E), 2) T(x) ;  ~ ( z ) ,  
~(a )  a r e  t h e  segments which make up the  unknown r e g i o n  ~. 

TABLE i. Results of Solution of IHCP for Different Quality 
of the Input Data and Different Volume of the a priori 
Information 

I I I  

0,5 
1,0 
2,0 
4,0 
8,0 

(--0,48;--0,2) 
(--0,46;--0,22) 
(--0,40; --0,3) 

(0,6 ; 1,24) 0,8 0,12 (--0,52;--0,16) 
(0,66; 1,22) 0,7 10,25[ (--0,50;--0,18) 
(0,70; 1,12) 0,45 0,52[ (--0,44; --0,24) 
(0,86; 1,08) 0,190,86 (--0,32;--0,28) 
(0,90; 0,96) 0,06 0,91 0 

(o,6;  1,24> 0,87 
(0,62; 
(0,70;1,20) 
(0,80; 1,18) 0,37 
(0,88; 1,0) ]0,11 

3,10 
3,22 
,44 

:),78 
3,84 

We consider a methodological example. The true temperature distribution T0(g) (Fig. i) 
is a fourth-degree polynomial with the range of definition (~, ~) = (-0.7; 1.3). The observa- 
tions T(xi) were modelled by the superposition of a normal random noise onto the values of 
T(xi), i = i, 25 calculated from (i) for ! = i and T = i0 -2, We assumed that T(~ = 5 (in 
relative units). Then (see Fig. i), the unknown region ~ consists of two segments ~(i) = 
(-0.55; -0.13) and ~(2) = (0.54; 1.27). 

We carried out a series of calculations (Table i) for five root-mean-square values & of 
the noise in ~(xi). In each variant, we studied the cases when, in point E = 0, an a priori 
value of the unknown function is given (II), and when the investigator does not have this 
information (I). The thermal diffusivity was, for simplicity, assumed known. Besides the 
coordinates of the segments ~(i) and ~(=) which make up the set of points g in which, from the 
available limited information one can guarantee that the unknown values T0(E) > T(~ Table i 
contains the normalized indices v I and v 2 of quality of the solution of the inverse problem. 
These indices are the ratios of the lengths of the segments which make up the sets ~i and ~=, 
respectively, to the sum of the lengths of segments ~(i) and ~(2) and to the length of the 
interval (~, ~) (it is clear that, in the ideal case when there is no noise and the function 
T0($) is reconstructed unambiguously, ~i = E, ~2 = ~, vl = I, v 2 = 0, and in the worst case 
~i = ~, ~2 = (=, ~), vl = 0, v 2 = i). In the terms of the sets ~i, ~=, ~3, the solution re- 
duces to the search for the extremal properties of the individual functions T0(E) from the 
permissible set of solutions of IHCP. Therefore, all approaches which were developed in the 
theory of solution of incorrectly posed problems to ensure a high stability of the results 
assist also to the growth of the indices of quality vl, v 2. In the present example, in 
particular, a very high quality of the results of interpretation is, in many ways, predeter- 
mined by the a priori specification of the degree n of the polynomial which describes the 
true temperature distribution. In the direct methods of solution of IHCP, the variation of 
the parameter n corresponds to one of the possible methods with self-regulation [6]. However, 
the class of retrospective IHCP whose solution does not contain the time �9 explicity is 
narrow. In the realization of the suggested approach in formulations where numerical methods 
of construction of individual permissible solutions of IHCP cannot be avoided, an important 
factor in the ~ncrease of the quality vl, v 2 of the solution <~i, ~2, ~s > becomes the use of 
the principle of step regularization [6] for a given computation step AT. 
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The solution of a concrete example shows clearly the particular features which are char- 
acteristic for the developed method as a whole. We note, in particular, the following fact. 
In the usual approach, the unique solution of the inverse problem is affected strongly by a 
random factor (the nature of the concrete realization of noise in the measurements): the 
accuracy of the solution constructed from very broad information can, in principle, be lower 
than the accuracy of a solution obtained from fewer data. It is the characteristic feature 
of methods adapted for the extraction of a guaranteed minimum of reliable information that 
the information content of the results of interpretation of the input data depends monotonir 
cally on their quality. This fact makes it possible to solve, in the regime of imitation 
modelling, such problems as the estimate of threshold conditions (critical accuracy of measure- 
ments whose analysis makes it possible, in addition, to extract information of the necessary 
quality), planning of a thermophysical experiment (for example, to choose if it is preferable 
to improve the accuracy of the measuring apparatus or to increase the volume of measurements). 

We consider in more detail the necessity of a preliminary study of the conditions of 
uniqueness and stability of solutions of the inverse problem. We consider a simple situation 
when the true solution T0(~) is a function of the type (2) and the parameter ~ is known but 
lies within the limits (~min, a-max)" From a formal viewpoint, the theoretical inverse prob- 
lem is posed incorrectly. In practice, if the interval (~min, ~max) is sufficiently narrow, 
the error Of solution of the inverse problem using approximate data is affected most signifi- 
cantly not by the ambiguity factor (it follows from (4) that the approximate solutions do 
not converge with respect to a), but by the noise level in the measurements of T(xi). Let us 
now suppose that a is known. The stability (as one of the conditions of correct formulation) 
is then ensured, but it does not always give a guarantee to obtain an approximate solution 
with a given quality. The classical concepts (existence, uniqueness, and stability of solu- 
tion) arose from the requirement for the cognizability of realistic objects from their in- 
dirct manifestations. In applied problems where idealization of the input data is impermissi- 
ble, it is necessary to express quantitatively (in terms of normalized indices) the effect of 
particular instability parameters on the quality of the final result of mathematical processing 
of experimental data, in addition to the analysis of fundamental properties of uniqueness and 
stability of the solutions of IHCP. 

Lastly, about the synthesis of algorithms based on the concepts of analysis of the set 
of permissible solutions and regularization. We turn to the structure of restrictions (7) on 
the allowed parameters. All the evidence about the noise is expressed here in terms of one 
value e since the information can easily be formalized in the form of a convenient system of 
linear inequalities. In reality, the evidence about the noise is often less complete and the 
advantage of the regularization method is that they can be allowed for without particular 
mathematical difficulties. This is reflected in the high filtering properties of the method 
when the residual deviation eQ between unknown true function T(x) and the optimum approxi- 
mation T(~ is considerably smaller than the intensity e of the noise (as a rule, by 
factor 5-10 or more). This makes it possible to take the smoothed-out curve T(~ as 
the basis rather than @(x) (as a reference), and to replace the restrictions (7) by the 
more stringent IT~ ) - AoF0(xi, ~)-...-AnFn(x i, ~)I ! c0" The set of allowed solutions 
is then narrowed down and the quality of the solution ~ is increased. 

In conclusion, we discuss briefly the position which the developed approach may take 
among other methods of solution of incorrectly posed IHCP which are successfully used at 
present. The aim of these methods is to increase the information content of the investiga- 
tions and to search for new methods of processing and analysis of the measured data which 
make it possible to make the required results more reliable [6]. New opportunities of the 
developed approach arise because the results of interpretation of the input data are repre- 
sented in a different form than it is done conventionally. In addition to the optimum approxi- 
mation T~(~) for the unknown function T0(~) and the estimate of proximity of T~(~) to 
in terms of one of the classical metrics which can be obtained by the traditional methods of 
solution of IHCP, one can now give guaranteed evidence (under indeterminacy conditions) about 
the object under study, and estimate the quality of the input data (independently of the method 
which is used in their subsequent analysis). This indicates that the results of solution of 
IHCP in terms of reliable information about the object under investigation can be used as dis- 
tinct estimates of the information content of the approximate solutions obtained using the 
known methods of interpretation of data of a thermal experiment. Ih the retrospective formu- 
lation of IHCP, the developed method makes it possible to observe fragments of any of the 
allowed solutions which are of interest to the investigator and which describe adequately the 
unknown true temperature distribution T0(~). 
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NOTATION 

a and D, thermal diffusivity and the diffusion coefficient; ~, scattering parameter; 
T0(~)-(C0(~)), T(x) (C(x)), initial and instantaneous temperature (concentration) profiles; ~, 
time; x and ~, coordinates; A~, coefficients of the temperature distribution function; e, 
norm of the error of measurements; ~, reference value of the function T0(t); ~, ~i, ~2, ~3, 
regions which are used to determine the solution of the inverse problem. 
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